Ablation of EYS in zebrafish causes mislocalisation of outer segment proteins, F-actin disruption and cone-rod dystrophy
نویسندگان
چکیده
Mutations in EYS are associated with autosomal recessive retinitis pigmentosa (arRP) and autosomal recessive cone-rod dystrophy (arCRD) however, the function of EYS and the molecular mechanisms of how these mutations cause retinal degeneration are still unclear. Because EYS is absent in mouse and rat, and the structure of the retina differs substantially between humans and Drosophila, we utilised zebrafish as a model organism to study the function of EYS in the retina. We constructed an EYS-knockout zebrafish-line by TALEN technology which showed visual impairment at an early age, while the histological and immunofluorescence assays indicated the presence of progressive retinal degeneration with a cone predominately affected pattern. These phenotypes recapitulate the clinical manifestations of arCRD patients. Furthermore, the EYS-/- zebrafish also showed mislocalisation of certain outer segment proteins (rhodopsin, opn1lw, opn1sw1, GNB3 and PRPH2), and disruption of actin filaments in photoreceptors. Protein mislocalisation may, therefore, disrupt the function of cones and rods in these zebrafish and cause photoreceptor death. Collectively, these results point to a novel role for EYS in maintaining the morphological structure of F-actin and in protein transport, loss of this function might be the trigger for the resultant cellular events that ultimately lead to photoreceptor death.
منابع مشابه
Eyes shut homolog is required for maintaining the ciliary pocket and survival of photoreceptors in zebrafish
Mutations in the extracellular matrix protein eyes shut homolog (EYS) cause photoreceptor degeneration in patients with retinitis pigmentosa 25 (RP25). Functions of EYS remain poorly understood, due in part to the lack of an EYS gene in mouse. We investigated the localization of vertebrate EYS proteins and engineered loss-of-function alleles in zebrafish. Immunostaining indicated that EYS local...
متن کاملUsher syndrome type 1–associated cadherins shape the photoreceptor outer segment
Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the out...
متن کاملEffects of NDRG1 family proteins on photoreceptor outer segment morphology in zebrafish
Rods and cones are functionally and morphologically distinct. We previously identified N-myc downstream-regulated gene 1b (ndrg1b) in carp as a cone-specific gene. Here, we show that NDRG1b and its paralog, NDRG1a-1, contribute to photoreceptor outer segment (OS) formation in zebrafish. In adult zebrafish photoreceptors, NDRG1a-1 was localized in the entire cone plasma membranes, and also in ro...
متن کاملThe Ciliopathy Gene ahi1 Is Required for Zebrafish Cone Photoreceptor Outer Segment Morphogenesis and Survival
Purpose Joubert syndrome (JBTS) is an autosomal recessive ciliopathy with considerable phenotypic variability. In addition to central nervous system abnormalities, a subset of JBTS patients exhibit retinal dystrophy and/or kidney disease. Mutations in the AHI1 gene are causative for approximately 10% of all JBTS cases. The purpose of this study was to generate ahi1 mutant alleles in zebrafish a...
متن کاملDisruption of the basal body protein POC1B results in autosomal-recessive cone-rod dystrophy.
Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized ...
متن کامل